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Abstract
As a step towards formalizing the cognitive process and interpretation of creativity, we present an
extended theory of creative systems that aims to better define the evaluation of creative systems and
processes. We extend previous research defining a formal framework for describing and comparing
creative systems by taking into account the judgment of artefacts that they generate with respect
to an observer. Prior work on formalizing creativity has mainly focused on the generating system
with respect to the evaluation of created artefacts. This paper extends this formalism by modeling
the judgment of creativity through models of observer systems. We show how our extended theory
can support the interpretation of MacGyver problems—problems defined in the cognitive systems
research community as classical planning problems designed to elucidate the cognitive process of
creative problem solving. Finally, we expand an existing definition of evaluation in creative systems
by putting forth general criteria of subjective evaluation based on initial empirical work regarding
aesthetic measure across artistic domains. This was done by using statistical methods to model
individual and group preferences over creative artefacts. These pilot experimental results model
abstract metrics of balance, symmetry, and readability across these artistic domains.

1. Introduction

The motivation for our work on understanding creativity and the creative process begins with Bo-
den’s seminal work on understanding creative behavior described in her book, The Creative Mind
(2004). In this book, Boden sets out to describe human creativity, creative behavior, and how com-
puters can help us understand creativity. However, Boden’s approach is purely qualitative and does
not provide a formal framework to explain the ideas in a way that is amenable to computational
analysis and representation.

To address the need to formalize Boden’s ideas, Wiggins (2006) put forth a detailed framework
for describing, analyzing, and comparing creative systems directly motivated by Boden’s hierarchy
of creativity. Wiggins’ work represents one of the few attempts to formalize Boden’s approach to
creativity with the explicit intent of moving towards a better understanding of systems that exhibit
creative behavior. Inspired by Boden’s description of psychological creativity, we propose an exten-
sion to Wiggins’ framework to account for the subjective evaluation of potentially creative systems
and artefacts. In this extended framework, we present the perception of creativity as the subjective
judgment of an observer with varying amounts of domain knowledge. We then expand Wiggins’
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initial definition of evaluation in creative systems by putting forth general criteria of subjective
evaluation based on empirical work regarding aesthetic measure across artistic domains.

In this paper we also highlight interesting parallels between our work on formalizing creative
systems with work in cognitive systems research. In particular, we reinterpret MacGyver problems
described by Sarathy and Scheutz (2018) in our extended theoretical framework. The formulation
of MacGyver problems represents a step towards designing creative cognitive systems while also
introducing a fruitful class of problems for the cognitive systems research community to tackle.
Better understanding creativity, both in terms of generative systems and evaluation systems, is a
vitally important part of modeling human-like cognitive systems. Accordingly, we believe that this
work, and continued research on formalizing creativity, can greatly benefit the cognitive systems
research community as researchers explore the cognitive process of creativity.

2. Background: related work

2.1 Boden and creativity

Boden (2004) defines creativity as the ability to “come up with ideas or artefacts that are new,
surprising and valuable”. Although researchers have debated the extent to which surprise is an
essential criteria for creativity or just a kind of novelty, researchers generally agree that novelty and
value are two essential criteria for creativity (Ritchie, 2007; Oman & Tumer, 2009). We will do
the same in our framework. Boden’s analysis of creativity starts by defining two particular cases
of creativity: psychological creativity and historical creativity (also referred to as P-creativity and
H-creativity respectively). Psychological creativity describes a creative process through which an
idea is created that is new to the person who came up with the idea. Historical creativity is a special
case of P-creativity wherein an idea is created that no one else has ever had before (i.e. completely
new in a societal context). P-creativity and H-creativity (and frankly creativity as a whole) are very
context-specific. If we were to break human society into subgroups, an idea that might be considered
H-creative in one subgroup might not be considered H-creative in another subgroup and vice versa.
Similarly, an individual’s idea that is considered H-creative in their specific subgroup might only be
considered P-creative in another subgroup that had already conceived of that individual’s idea. For
the majority of this paper however, we will not distinguish between P-creativity and H-creativity.
Our analysis of creativity will focus primarily on the fundamental idea of P-creativity which frames
any evaluation of creativity as an evaluation of creativity from an individual’s perspective.

In her work, Boden also puts forth the idea of the creative process involving a search through
a conceptual space of ideas and artefacts. If one were to consider a content generation system as a
potentially creative system, its conceptual space could be loosely interpreted as a state space of arte-
facts. In order to better explain how a creative process involves exploring these conceptual spaces,
Boden defines two particular types of creativity: exploratory creativity and transformational cre-
ativity. Exploratory creativity is defined as discovering new concepts in the conceptual space via an
exploration of the conceptual space whereas transformational creativity is defined as transforming
the conceptual space via rules which “sculpt” the conceptual space. As Wiggins (2006) points out,
Boden does not provide any explicit details of how conceptual space constraints may be defined or
what the difference between exploring and transforming the space is.
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To address these concerns and to formalize Boden’s ideas, we present Wiggins’ descriptive
framework of creative systems. However, before attempting to explain creativity—a term which is
already ill-defined—we will adopt a useful definition of creativity as mentioned by Wiggins analo-
gous to early definitions of intelligence. This definition describes creativity as “the performance of
tasks which, if performed by a human, would be deemed creative."

2.2 Wiggins’ creative systems framework

Wiggins’ (2006) creative systems framework begins by defining a universe, U , a multidimensional
space that can represent anything. All possible concepts exist as distinct points in the multidimen-
sional space defined by U . Following the state-space analogy of Boden’s initial conceptual space
definition, U is capable of representing all abstract and complete concepts and contains both com-
plete and incomplete artefacts; this includes the empty concept >. Hence, U contains all possible
concepts, including the empty concept >. Additionally, all concepts in U are distinct (i.e. no two
concepts in U are identical to one another).

To define the conceptual spaces of U , two rule sets, R and T , are introduced. R represents
the rules that constrain (i.e. sculpt) the conceptual space and T represents the rules that determine
how to traverse the conceptual space. In the context of answer set programming, R can be likened
to constraints which omit potential solutions exhibiting properties that the constraints specify as
invalid—thereby constraining the space of potentially valid solutions (Smith & Mateas, 2011). In
the context of state-space search, T can be likened to search strategies (e.g. heuristics) for informed
search through states. R and T are further defined as belonging to a language L composed from
an alphabet A . The last step required for formally defining a conceptual space is defining an inter-
pretation function. [[.]] is defined as a partial function that maps from L to real number functions
that return a real number in [0,1] which is then mapped to either true or false depending on its
value. With the above definitions of U , R, and the interpretation function [[.]], a conceptual space,
C , is defined as:

C = [[R]](U ) (1)

By this definition, a conceptual space, C , is defined by the interpretation, [[.]], of rules defining
how to constrain and define a conceptual space, R, applied to a larger multidimensional space, U .
Additionally, now the distinction between R and T is more apparent; R defines rules that apply
to U to describe a whole domain of acceptable artifacts whereas T defines traversal rules (e.g.
heuristics) for exploring possible artifacts within the domain defined by R.

In order to account for the traversal (i.e. exploration) of conceptual spaces via T , another
interpreter 〈〈.,.,.〉〉 is defined. 〈〈.,.,.〉〉 takes as input three subsets of L , namely R, T , and E which
will be briefly described soon. 〈〈.,.,.〉〉 operates on a totally ordered subset of U , cin, and maps it to
another totally ordered subset, cout. Namely,

cout = 〈〈R,T ,E 〉〉(cin) (2)

These formalizations more rigorously define Boden’s idea of conceptual spaces for creativity
and can already describe Boden’s (2004) exploratory and transformational creativity. Transforma-
tional creativity can be achieved by either transforming R or T .
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E is described as a set of rules that allows for the evaluation of concepts in C and determina-
tion of their value. Formally defining E is complicated by the fact that the criteria used for E can
vary depending on desired attributes of artefacts and the application domain. Accordingly, Wiggins’
framework consciously chooses to avoid discussing how to evaluate these concepts and leaves it as
an important issue to be discussed at a later time. In summation, Wiggins’ framework rigorously
formalizes the process of creativity in systems and creative behavior in agents but leaves the evalua-
tive aspect open for future discussion. We will revisit E when we describe our analysis of empirical
work on defining a cross-domain metric of aesthetic measure for the comparison of created artefacts
later in the paper.

It should be noted that previous research has explored how to evaluate artefacts in specific do-
mains and how to provide preliminary frameworks for evaluating creativity but, to our knowledge,
little research has been done to define the evaluation of creativity in terms of an explicit observer
of varying knowledge and expertise (Boden, 1998; Pearce & Wiggins, 2001; Ritchie, 2001). We
believe that an observer’s subjective evaluation is fundamental to theories of creativity analysis
given the strong connection between Boden’s P-creativity and the personal context of the individ-
ual(s) evaluating some creative process or artefact. We will make this observer-oriented subjective
evaluation explicit in our extended framework of creative systems.

3. Extended theory of creative systems

3.1 Defining an observer

We start by defining an observer, O , of a creative process:

Definition 1 (Observer). An observer, O , is an entity capable of representing concepts in the
multidimensional space U .

Given that U defines the universe of possibilities of a creative process’ conceptual space, O de-
scribes an observing entity with the potential to re-represent concepts in the universe of possibilities
U . By our definition an observer can be a human or even a computational system. In fact, observers
can be represented as generative systems that produce artefacts in their respective conceptual spaces.
This idea of potential re-representation is particularly important because not every observer, O , can
be assumed to be capable of representing any and all concepts in U . It is for this reason that we
define a special type of observer which we shall call the omniscient oracle Oo. The omniscient
oracle is an observer capable of representing any and all concepts in U . As we will later show,
the omniscient oracle as described here is an observer for which nothing is creative due to its com-
plete representation of U . This distinction between observers and the omniscient oracle leads to
the following axiom:

Axiom 1 (Restricted observer representation). Any observer, O , that is not the omniscient
oracle can only represent conceptual spaces, C , that are proper subsets of U . C ( U .

The above axiom restates the conclusion that any observer that is not the omniscient observer can
only re-represent parts of U but never the entirety of U . We would also like to explicitly state that

4



AN OBSERVER-ORIENTED THEORY OF CREATIVITY AND THE CREATIVE PROCESS

multiple observers can exist simultaneously. Given the definition stating that an observer, O , can
potentially re-represent concepts in the universe U , we now define how observers represent these
concepts.

3.2 Defining an observer’s conceptual space

A fundamental property of observers is that all observers possess their own, individual rule sets Ro

and To. These rule sets are analogous to R and T defined earlier except that they are particular
to an observer, O , rather than being generally defined for a creative process. Hence, Ro represents
an observer’s specific rules for constraining a conceptual space and To represents their specific
rules for traversing a conceptual space. In practice, these rule sets represent the extent to which an
observer is able to define domains within U as well as explore concepts within it. As such, these
rule sets effectively represent an observer’s knowledge of domains in U .

Using the interpretation function [[.]] from earlier which works on well-formed rule sets de-
scribed in a language L , we can define the conceptual space of an observer O as follows:

Co = [[Ro]](U ) (3)

There are a few things which should be stated:

1. The interpretation function [[.]] is defined such that as long as a constraining rule set, R, is
a well-formed rule set, it can be successfully interpreted and this interpretation works for any
well-formed rule set in U .

2. Given that the conceptual spaces of any observer, Co, must exist within U , interpreting Ro

within U yields Co.

3. The same universe, U , can be used to describe the conceptual spaces of different observers
with different rule sets.

This definition formalizes the idea that observers’ conceptual spaces are subsets of the universe of
possibilities U . It also becomes more apparent that an observer and its conceptual spaces always
exist within the context of U .

We would also like to revisit how conceptual space restraining rules may be interpreted by a
system. Let r be a rule defined in the rule set R. We refrain from stating that concepts that violate r
are immediately excluded from the constrained conceptual space given that numerous rules can be
defined in R and they need not be mutually exclusive. For example, consider the following rules in
the context of music composition:

1. Produce musical scores using a tempo of 120 beats per minute (bpm).

2. Produce musical scores using at least two different instruments.

If the rules are not explicitly defined as being mutually exclusive, acceptable concepts can include
artefacts that only use a tempo of 120 bpm, only use at least two different instruments, or both.
If these are the only two rules applied to U , then C will include concepts that satisfy at least
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one of the rules in R while excluding the rest. Regardless, the issue of rule exclusiveness is a
design choice which can be delegated to the rule interpretation function [[.]] which is shared by the
creative process and observers. We envision that a key challenge in an implemented system will be
being able to recognize and handle rules that conflict and or contradict each other. Whether it is by
excluding one of the contradictory rules or by finding another set of compatible rules, this decision
can greatly impact how well a potentially creative system can combine and analyze rules to generate
creative artifacts.

3.3 Defining the observer in relation to the creator

We begin our theory’s components on subjective evaluation by first highlighting the relationship
between the observer and the general creative process. The general creative process refers to the po-
tentially creative process defined by Wiggins’ (2006) preliminary creative systems framework. This
process is a formalization of how some entity (henceforth called the creator) defines its conceptual
space and explores and transforms conceptual spaces to exhibit potentially creative behavior in the
course of creating new and valuable artefacts in the context of a universe of possibilities U . We
use the term “creator” to emphasize the fact that the entity engaging in exploring and redefining
conceptual spaces in U seeks to generate creative artefacts and can be a human creator or another
generative system. We can now phrase an observation from earlier as follows:

Observation 1 (Shared universal context). The creator and observer(s) share the same uni-
versal context U .

Another way to interpret the first observation is that the conceptual spaces of the creator and the
observer(s) all exist within the same universe. Given that our viewpoint of the observer defines an
observer as an independent onlooker to the creator’s creative process, the creator’s conceptual space
defining rule sets, R and T , are independent from those of the observer(s), Ro and To. This leads
to the follow observation which is illustrated in Figure 1:

Observation 2 (Independence of creator/observer concepts). The conceptual space of the
creator, C , and the conceptual space of the observer, Co, are defined independently of each
other but are both subsets of U . (Note: If there are multiple observers, each respective Co is
defined independently of the other observers’ conceptual spaces.)

The idea of independence between these conceptual spaces only extends to how they are inde-
pendently defined by their individual originators. If R and Ro contain similar rules, C and Co will
overlap which in turn means that the observer is able to conceive of some concepts in the conceptual
space of the creator (as determined by the amount of intersection) and vice versa. This is evident in
the image on the right in Figure 1. With this knowledge we are now able to state how and when the
observer might consider the creator (and its corresponding creative process) as being creative.

3.4 An initial definition of the subjective evaluation of creativity

Our definition of an observer’s subjective evaluation of creativity begins with the following postu-
late:
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Figure 1. Illustration of how two example conceptual spaces, C and Co, exist within U . Left: No intersection
of concepts belonging to the creator and the observer. Right: Intersection of concepts belonging to the creator
and the observer.

Postulate 1: an observer is likely to consider concepts that are not explicitly defined in their
conceptual space, Co, but appear in the conceptual space of a creator, C , as being creative.

These concepts represent artefacts and ideas that lie outside of the observer’s explicitly known
artefact range and represent a class of concepts that are new to the observer. We have based this
postulate on the essential criteria of creativity which suggests that creative ideas and artefacts are
novel.

We can also represent concepts that are new to the creator by framing the creator as its own
observer. Therefore, even if an observer may not consider a creator’s concept as creative, if the
creator came up with a novel idea within their own perspective, the creator can still think that their
newly formed idea is creative. This is directly related to Boden’s initial formulation of P-creativity
in that concepts in C but not in Co represent new concepts that an observer is unable to represent (or
at least initially conceive of). If the creator is also its own observer, then P-creativity results from
the creator’s own initial observer state (i.e. prior to the creative process) identifying a new result
as creative. As an aside, if we represent a society as consisting of the creator and any number of
observers, then we can describe ideas that are novel to all of the observers and the creator as being
historically creative within that societal context.

We can use rule sets to define how these conceptual spaces may overlap or be distinct from each
other. Recall that conceptual spaces are defined by the interpretation of space constraining rules
R in the context of a universe of possibilities U . Based on the rule interpretation applied to R,
each rule r in R constrains U to include concepts that satisfy r. Hence, for each r that is both in
R and Ro, the conceptual spaces C and Co overlap each other over concepts that satisfy r. More
concisely:

∃r : r ∈ R ∧ r ∈ Ro ⇐⇒ ∃c : c ∈ C ∧ c ∈ Co. (4)
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Similarly, if neither of the rule sets share a common rule then there is no overlap between the two
conceptual spaces.

It should now be more intuitive that the rule sets of the creator and the observer affect the ob-
server’s perceived creativity of the creator and its concepts. When the creator’s conceptual space
includes concepts that are outside of the observer’s conceptual space, these concepts are more likely
to be deemed creative by the observer. These “external” concepts result from rules that are exclu-
sive to the creator’s rule set which allows them to represent these concepts. In other words, these
concepts exhibit one of the essential criteria of creativity: novelty. This leads to the following claim:

Claim 1: an observer’s perceived creativity of a creator results from rules that the creator
possesses but the observer has not yet incorporated into their own rule set with respect to
some application domain.

In consideration of the claim of perceived creativity mentioned above, one might also come to the
conclusion that if that an observer adopts previously unknown rules into their rule set, then the
observer may no longer consider concepts relying on those rules to appear creative as creative.
This observation describes an observer who expands their domain knowledge as they encounter
new concept rules. In this case, the “learned observer” expands their threshold of creativity thereby
requiring a creative process to generate even newer concept rules that the learned observer will now
consider creative. Hence, the creative process can also be framed as a struggle to continue being
perceived as creative by observers who learn from their exposure to new ideas.

Understanding the perception of creativity through this framework can also aid in the develop-
ment of systems that aim to produce interesting content for users and designers. One such appli-
cation is the area of procedural content generation via machine learning (PCGML) as defined by
Summerville et al (2018). By using machine learning methods to learn an abstracted form of an
individual’s knowledge of a domain, such systems can better focus on what properties of content
may appear creative to specific individuals. In the context of video game level design, this could
extend to a level generation system generating levels with concepts that are newer and newer to a
player. Of course, balancing the expressiveness of the generator as it adjusts to an individual while
making sure its content is functionally valuable is a challenging task.

3.5 Connection to MacGyver problems in cognitive systems research

Our formulation of the creative systems framework—in particular its emphasis on rule comparison-
based creativity evaluation—shares an interesting connection to MacGyver Problems in cognitive
systems research (Sarathy & Scheutz, 2018). MacGyver problems are defined as a class of classical
planning problems that are initially unsolvable for an agent given their current knowledge. However,
MacGyver problems are also defined in such a way that if an agent sufficiently expands its domain
representation or understanding of its world within the context of a larger universe, the problem
can ultimately be solved. Similar to Wiggins’ initial framework and subsequently our extended
framework, MacGyver problems define a universe consisting of numerous worlds whose conceptual
spaces within the universe are shaped by the abilities of individual agents of which these agents are
either aware or unaware. A key component of the world definition is that worlds only represent
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Figure 2. Illustration of the initial states of sample MacGyver problems informally described in the creative
systems framework. Left: No intersection between the space of valid solutions and the observer’s known
world conceptual space at the initial state. Right: Intersection between the space of valid solutions and the
observer’s known world conceptual space at the initial state.

portions of the universe that are both perceivable and actionable by their respective agents. Hence,
worlds can be likened to conceptual spaces in U .

MacGyver problems are designed to showcase how humans exhibit flexible and creative behav-
ior to solve problems that are initially unsolvable given their current knowledge of a problem. They
are specifically presented as an initial step towards designing creative cognitive systems. The core
component of MacGyver problems that relates to the process of creative problem solving is how
an agent expands its understanding of its world to solve these problems. This particular trait of
MacGyver problems is comparable to how our described observers consider a creator to be creative.

We can informally represent a MacGyver problem in our framework by letting a conceptual
space CMc describe a class of solutions to a MacGyver problem and by letting the agent trying to
solve the MacGyver problem be the creator. By the definition of MacGyver problems, we know that
the agent’s conceptual space will not initially include any solutions in CMc. In order to solve the
problem, the agent (i.e. creator) is free to explore and transform their conceptual space by defining
and redefining their rule sets to hopefully achieve a valid solution defined in CMc. This is analogous
to an agent in a MacGyver problem expanding its domain representation and world understanding.
We also define an observer of the agent which represents an onlooker of the agent’s attempts at
discovering a solution.

Once the agent discovers a solution, the onlooking observer can then determine whether or not
the agent’s solution is creative. For instance, if the agent adopted a rule to solve the problem that the
observer had not previously considered or defined within their own world’s conceptual space, then
the observer may very well consider the agent’s overall problem solving process as creative. The
subjective aspect of the observer’s evaluation of the agent’s creativity defined by our framework can
also describe a situation wherein the observer does not consider a particular solution to be creative.
An example of this would be when the creator’s solution (i.e. expanded world knowledge to reach a
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solution) already exists within the observer’s world. In other words, the observer’s conceptual space
intersects with some part of the class of solution CMc. This would mean that the agent’s solution
happened to be a solution of which the observer was already aware. Hence, even if the agent’s
solution was creative based off of their initial knowledge when solving the problem, an observer
might not consider it to be creative in their own context. Figure 2 illustrates these two scenarios via
their respective images.

4. Finding a general aesthetic measure metric for E

We now return our attention to the evaluation rule set E from Wiggins’ (2006) creative systems
framework. Once again, E is defined as a set of rules that allows for the evaluation of concepts
in C . In terms of the essential criteria of creativity, E represents value. One of the most difficult
aspects of formalizing E results from the fact that the criteria used for E can vary depending on the
desired attributes of artefacts. Furthermore, the criteria for E can vary significantly across different
domains describing the general types of artefacts that should be produced by the creator. If we
consider a creator pursuing a creative process as a generative system, we find that this difficulty in
characterizing E mirrors one of the key challenges in the design, development, and evaluation of
generative systems: defining a metric for the comparison of created artefacts. Numerous researchers
have also noted that a further challenge in characterizing the creativity of a generative system is to
utilize the metric of comparison with respect to an observer to evaluate the perceived creativity of
generated artefacts of the generative system (Karimi et al., 2018; Grace & Maher, 2016).

In order to better define E in the context of a generalizable, formal framework with an observer,
we present empirical work in two artistic domains that illustrates abstract, general properties of aes-
thetic measure for the evaluation of artefacts. These abstract metrics can be applied across numerous
artistic domains and suggest general attributes for E as an evaluation metric.

Our inspiration for this analysis is the quest for a precise mathematical definition of a cross-
domain aesthetic measure as pursued by Birkhoff (1933) and a more recent reformulation of it by
Moles (1968) , Bense (1969), and Rigau, Feixas, and Sbert (2007) in terms of information theory and
computational complexity. This is our starting point because any generative system needs self- and
external-validation in terms of being creative by means of comparison of the artefacts it generates.
Such a comparison, particularly in terms of creativity, can be seen as a relative measurement of its
aesthetic (broadly speaking) appeal to its audience (e.g. an observer).

Birkhoff, in his detailed monograph titled Aesthetic Measure, defined aesthetic measure as the
ratio of Order over Complexity. This can be understood as the complexity of interpreting the num-
ber of features an artifact includes and the amount of regularity observed in the construction of the
artifact. For example, in a generative system that constructs shapes consisting of 4 axis-aligned line
segments that form closed figures, its range consists of axis-aligned quadrilaterals of all sizes. For
any given quadrilateral in its range, the complexity of shapes can be considered equal but squares
and rectangles have a certain orderly arrangement with right angles between edges. Furthermore,
among rectangles, certain aspect ratios are perceived to be more pleasing due to the perceived regu-
larity in their shape. Birkhoff provides extensive calculations to justify the aesthetic scores that are
calculated with his measure for this domain. Some shapes are reproduced in Figure 3.
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Figure 3. Applied to polygons, Birkhoff’s formula for aesthetic value gives a square the highest rating. A
five-pointed star (not shown) similar to the one that appears on the flag of the United States has a rating of
0.90. (Ivas Peterson, Science News, May 2004)

Another notable thread of research that directly connects with Birkhoff is that by Rigau et al
(2007). They limit their quantification of aesthetic measure to paintings and use paintings by Mon-
drian, Pollock, and Van Gogh to illustrate the applicability of their metric. In this work, the measure
of order is the Shannon Entropy of the palette of the image which corresponds to the selection
of palette colors in relation to a uniform palette. The measure of complexity is defined as the
Kolmogorov complexity which is estimated as the compression ratio of a compression algorithm
applied to the image. Taking these two metrics, the aesthetic measure of an image is then defined
as the ratio of initial information content in the image represented by Shannon Entropy to reduc-
tion in uncertainty represented by the compression ratio. One key distinction between the original
approach by Birkhoff and latter work is the choice of artefacts. The examples Birkhoff evaluates
range from abstract forms like the shapes of vases to musical arrangement. At first glance, it ap-
pears that the choice of vase form is primarily motivated by the shapes of ancient vases and have a
historical connection. But this approach of evaluation of forms is quite relevant in modern design
as can be seen by the story of the design of the Coke bottle1. There is a difference between a gen-
erally pleasing form (e.g. photographic composition that adheres to the golden ratio) that becomes
commonplace in society and is generally appreciated in terms of features of design and a specific
and unique artifact.

5. Practical measurement of aesthetics

Computational models of aesthetic measure have many applications ranging from creativity support
tools, evaluation of algorithmic creativity, and personalization with respect to user preferences. Such
measures are challenging to develop due to the lack of functional and interpretable inputs, noise in
naturally occurring data sets, and unreliable self-reported data due to different interpretations of
embedded content. Early work in psychology on art and visual perception identified concepts like
symmetry, rhythm, contrast, etc. that correspond to cross-domain features of visual aesthetics (Arn-
heim, 1974). As a significant component of the evaluation rule set E , aesthetic evaluation of gener-
ated artefacts is an important piece in characterizing creativity. For this, we present empirical work
in two domains, namely photographic composition and full-body gestural performance (dance), and

1. https://www.coca-colacompany.com/stories/the-story-of-the-coca-cola-bottle
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Figure 4. Collage of in-game photographs taken from the game Panorama, developed at UC Santa Cruz.

present experimental results on modeling abstract metrics of Balance, Symmetry, and Readability
across these artistic domains. In these experiments, researchers respectively created corpora with
automatically annotated features, and collected human preference ratings through crowdsourcing
platforms to get a judgment of goodness of artefacts. We discuss issues related to the design of
experiments, feature modeling and selection, and applications of machine learning algorithms for
learning preferences.

5.1 Composition preferences for synthetic photographs

For understanding visual composition preferences, Swanson, Escoffery, and Jhala (2012) created a
corpus of synthetic photographs through a game, Panorama, that procedurally generated panoramas
with limited palettes of shapes, colors, and objects (Morgens & Jhala, 2013). Their goal was to
create models to compute the overall composition quality of an image with respect to composition
features as well as capturing the difference in preferences of individual viewers (see Figure 4). Top-
down design of composition metrics, based on photography rules, were combined with bottom-up
statistical analysis to correlate aesthetic quality with viewer preferences. Color coded badges in the
game functioned as an aesthetic meter, encouraging players to take pictures that rated highly for
Rule of Thirds, Balance, and Symmetry. Generating their own corpus of images reduced the feature
set in a way that would be difficult using photos from image repositories on the Web. This gave
them additional control over feature dimensions through design abstraction, such as removing color
or minimizing cultural references in the game’s representation of landscape photography. Using
their corpus to conduct a preference study, viewer perception of image quality was rated through
crowd sourcing on Mechanical Turk.

Within this simplified vocabulary of greyscale panoramic images with a small number of shapes
for buildings, trees, meadows, and windmills, the game was still able to get a large number of
photographs that varied in terms of the number of objects, size of objects, location in frame, angle
of the camera, horizon line in the frame, and other features totaling to over 250 low level features.
They conducted a study with pairwise comparison with 4 alternative forced choices. After pairwise
preference data collection, they used SVN based models to check for accuracy of prediction. The
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Figure 5. Learning rate for model that uses high level Balance, Spacing, Symmetry features on individual
preferences. Higher f-score indicates more consistency in higher ratings of images with significant features.

key insight was that human raters, for whom the algorithm was able to predict with high accuracy
ratings for unseen photographs, were consistent in their choice of features for aesthetic evaluation.
Users for whom the algorithm was unable to get high prediction accuracy were not consistent with
the presence of features in their high rated images.

Figure 5 summarizes results for individual learning rate over user ratings.

5.2 Evaluating gestural aesthetics

Maraffi, Ishikawa, and Jhala (2013) took the notions of Balance, Symmetry, and Readability in
full body gestural performances and defined these high level features in terms of low level joint
positions and angles that were captured through a motion-capture camera. Similar to the setup
for the Panorama project, performers played the Michael Jackson Experience dance game with the
Microsoft Kinect but were captured in high resolution motion capture setup as shown in Figure 6.

An example performance with high level features is shown in Figure 7. Through an initial
survey, performers were divided into two clusters, gamers with experience playing Kinect games
but not good dancers, and skilled dancers without much experience playing games. The hypothesis
was that if the definitions of high level aesthetic features were correct then the algorithm would
be able to classify good and bad dancers from observation of their gameplay regardless of their
score on the game. They also looked at how much the game’s evaluation of poses matched the
aesthetics of dance. For the experiment, data was recorded on simplified animation rigs as shown
in Figure 8. Results of this work indicate that the high level features of balance, symmetry, and
readability are good indicators of performer skill as judged by independent observers outside the
context of gameplay.
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Figure 6. Setup for gesture capture. Players played the dance game Michael Jackson Experience inside a high
resolution Motion Capture system.

Figure 7. Aesthetic evaluation of dance performance using Balance, Readability, and Asymmetry as higher
level features and joint positions and angles as low-level features.
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Figure 8. Setup for gesture capture. Players played the dance game Michael Jackson Experience inside a high
resolution Motion Capture system.

Along the lines of Birkhoff’s idea of Order and Complexity, computational frameworks for the
area of study of visual aesthetics have been influenced by psychology methods and visual art theory
related to aesthetics. Composition rules have been studied in the popular arts of painting, photogra-
phy, and cinema. For instance, Rule of Thirds has been implemented as a quality inferring feature
used to distinguish professional from amateur photography. The Gestalt psychology concept of
goodness configuration, where perception is organized according to properties like symmetry and
simplicity, has also influenced feature representation. Processing fluency theory suggests readabil-
ity features for image appeal. Challenges include an “aesthetics gap” that stems from the inherent
semantics gap between low-level computable visual features and high-level subjective semantics.
Core problems are predicting aesthetic and emotional responses for cliques in the general popula-
tion, and understanding individual preferences that make some images more appealing than others
are key concerns in that research area.

6. Conclusion

In this paper, we extended Wiggins’ (2006) creative systems framework by adding a formalism de-
scribing an observer. This extension was inspired by Boden’s (2004) description of psychological
creativity in which creativity is judged from the perspective of an individual and their specific do-
main context. This observer exists within the same universe of possibilities described by Wiggins
and, as such, is capable of representing concepts in the universe. By reframing the general cogni-
tive process defined by Wiggins as an entity pursuing some creative process to generate artefacts
via conceptual spaces, we defined the observer in relation to the creator as being an observer to
a potentially creative process. The creativity of a potentially creative process is then formalized
as the subjective judgment of an observer with varying amounts of domain knowledge. Our main
claim from this formalization is that perceived creativity results from a creative process generating
concepts by utilizing descriptive domain rules that an observer (or oneself) is initially unaware of
within the context of an application domain. Our framework also supports situations in which the
perceived creativity of some process or artefact differs amongst multiple agents.

We reinterpreted MacGyver problems within our framework as an agent’s creative search pro-
cess of expanding its domain descriptive rules well enough to reach any number of MacGyver prob-
lem solutions defined in a conceptual space within a universe of possibilities (Sarathy & Scheutz,
2018). The judgment of whether or not an agent’s process of solving a MacGyver problem is cre-
ative is then determined by an observer of that agent’s creative process.

15



C. MILLER, A. JHALA

We then concluded by putting forth general criteria for the subjective evaluation of artefacts
based on aesthetic measure across artistic domains. These general criteria were proposed as an
initial expansion of Wiggins’ (2006) definition of evaluation in creative systems. These pilot exper-
imental results modeled abstract metrics of balance, symmetry, and readability across these artistic
domains.

We have described our work on formally defining creativity and cross-domain aesthetic measure
as a step towards better understanding creativity. Our approach focuses on both the generative aspect
of creativity as well as the evaluative aspect of potentially creative artefacts and ideas. We have
presented this work with the belief that research on understanding creativity from the perspective
of generative systems and evaluation systems can greatly benefit the cognitive systems research
community.
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